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1. INTRODUCTION

Figure 1 shows two outpute from the ray tracing subroutine of the common shot
inversion code, CXZCS (Dong, 1989). In both diagrams, the ray from the source to
the output point and a suite of rays from the output point to a suite of receivers are
shown. The spread of rays in th! lower figure (Figure 1b) can be seen to be smoother
than the spread in the upper figure (Figure la). While the travel times for the two
sets of rays is nearly the same, the amplitude-versus-offset distribution for the rays
of Figure lb is also smoother than the amplitude distribution for the rays of Figure
1a.

The model for the Figure la was generated by picking points on the interfaces
and then connecting them with cubic splines. For Figure 1b, the model of Figure
la is passed through a smoothing operator which penalizes point distributions that
produce large derivatives, while still requires that the modified curve describing each
interface still remains "close" to the original model. This paper describes the smooth-
ing operator used to generate the model used in Figure lb.

The model generating techinique described above is an example of the process of
observing and recording data-in that case, (x, z) points of model interfaces. Usually,
these data are inaccurate because of noise or measurement error. If we directly connect
these data by interpolation to obtain a curve, the result often exhibits a roughness
that characterizes the inaccuracies due to the errors, and suggests a fineness of detail
that is invalid for the data. When one has a priori information that data represents
a smooth phenomenon, then it is important to smooth the observed data consistent
with the priori knowlwdge.

Two common smoothing methods are: (1) lowpass Fourier transform and (2) the
Moving-average Method. Lowpass Fourier transform is carried out in the frequency
domain. This method removes all frequencies above a specific frequency. \Ve can use
FFT to speed up the computation, but it requires uniform grid data. The Moving-
average Method replaces a value at a point by an average value around that point, but
it cannot suppress high frequency c.r...cr, ets c -iently. In this paper, we give an
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FIG. 1. Ray tracing in the common shot data. The lower one is the smoothed model.

The non-smooth model has one ray tracing broken.
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alternative smoothing method. A smooth function must have small derivatives. So we
hope that a smooth curve is both close to the origirnal one and has as small derivatives
as possible. That is, we minimize the weighted squared sum of the error between the
desired curve and the original one and some order derivative of the desired curve.
This method suppresses high frequency components efficiently instead of removing
them. In discretization, this method does ,iot require uniform grid data, and the
smooth curve is found by solving a banded linear system whose computational cost
is proportional to number of data points.

2. SMOOTHING TECHNIQUE

Mathematical Equation

Let z = f(x) be any continuous function. We solve for a smooth function g(x)
that approximates f(x) through the requirement

J(X) _ g(X)1 2 dX + (dg)2~ =m,(1

where a > 0 is called the smoothing parameter and n is a positive integer. The larger
the value of a and the larger n, the smoother g(x) will be.

By using the calculus of variations we can change (1) into a differential equation
for g(x):

(_1)a d2ng + g(x) = f(x).

This equation has a simple solution by Fourier transform:

G(k) = F(k)/(1 + ak 2"). (2)

Here, we have used capitol letters to denote the Fourier transforms of the correspond-
ing functions denoted by lower case letters in the spatial domain. This expression
shows that high-wavenumber components of f(x) are suppressed in the approximation
g(x). Equation (2) is same as the Butterworth filter.

Numerical Algorithm

In general, we know a discrete data set, (xi, f), i = 0, 1,2,..., N, instead of con-
tinuous data, f(x). Let hi = xi - xi-. We use a finite difference approximation
of the differential operator in equation (1). If the hi's are equal, this work is not
difficult. Otherwise, it becomes very complicated for n more than 2. Fortunately,
n = 2 is a smooth enough index. After discretization equation (1) is equivalent to
a linear algebric system of equations for the unknown g,'s. The coefficient matrix of
the system is symmetric positive definite, for each n. When n = 1 the matrix is
tridiagonal; when n = 2, the matrix is five-diagonal. Their comp,:.ations for solvihlg
the g,'s are proportional to N.

3



Liu Smoothing Technique

Choice of smoothing parameter

If the smoothing parameter a is two large, we will lose some low frequency compo-
nents. Therefore, choosing a suitable smoothing parameter is necessary. We specify
a wavenumber k0 , then choose a such that

G(ko) = 0.5F(k0 ).

Here k0 should be chosen as some proportion of the Nyquist wavenumber, kNy q . For
example, empirically, I found that taking k0 = kNjq/6, produced travel times not
too far from the traveltimes of the original model, but amplitudes that were much
smoother as a function of receiver position than for the unsmoothed model interfaces.

3. COMPARISON OF SMOOTHING METHODS

The Moving-average Method smooths a functi.n as

g(z) - 2 - f(s)ds, (3)

where f(x) is an original function and g(x) is the desired function. In the wavenumber
domain, the solution is

sin(kAx) F(k). (4)
G(k) - kAx

The larger Ax is, the smoother g(x) will be.
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FIG. 2. Smoothing filters in the wavenumber domain. Label Al represents the
Moving-average method; n = 1,2 represent our smoothing method with n as defined
in equation (1). L represents the lowpass Fourier transform.

From Figure 2, lowpass Fourier transform can be seen to most effectively eliminate
high frequencies, however, at a cost of producing ringing in the spatial domain. With
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our method, n = 2 provides a sufficiently good approximation of the rectangle of
the iowpass Fourier transform while not producing the same undesirable effect in the
spatial domain. The (three-term) Moving-average filter decays most slowly in the
wavenumber domain. This filter with larger windows and nonuniform sampling is
more cunbersome to use than the filter we propose here.

In computational cost, Fourier transform is O(NlogN), the Moving-average is
O(N)-but with a large constant when decay rate in the Fourier domain is made to
compete with our approach, and our method is O(n2N).

4. APPLICATION TO RAY TRACING

In seismic data processing, we often meet ray tracing problems. In particular, we
consider the medium to consist of constant-velocity layers separated by arbitrary in-
terfaces which are obtained by measurement or digitizing from graphs. To guarantee
a successful ray tracina., the modeled interface must be made smooth. Two examples
are illustrated in Figure 1 and 3. The smoothed interfaces yield a more uniform cover-
age by rays, which gurantees a stable amplitude computation (Liu, 1991). Moreover,
the smoothed interfaces avoid the ray tracing broken (Figure 1).

5. CONCLUSIONS

In this paper, I introduced a smoothing technique for experimental curve. Thi
method is not restricted by uniform sampling, and smooths a curve efficiently. A key
step in practice is how to choose a suitable smoothing parameter. This depends on
the properties of the problem to be solved. In the example of my application, I chosc
the smoothing parameter such that the travaltime is preserved and the amplitude
ditribution becomes smoother.
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FIG. 3. Ray tracing in the common offset data. The lowver one is the smoothed

model.
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